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Abstract: This study presents a analysis of the impact of 

climate change on several factors that affect agricultural 

output such as soil moisture, temperature anomalies, and 

precipitation anomalies. The project utilizes data-powered 

positive deviance (DPPD) to identify farmers who are 

achieving better values of the aforementioned factors 

despite similar geographical conditions. The findings are 

then used to devise policies to assist other farmers in 

adopting similar practices. The methodology used in the 

study applies seasonal-trend decomposition using the loess 

(STL) method to analyze temporal trends of weather 

variables across a specific region, using data collected from 

various sources, such as satellite imagery and weather 

station readings in the state of Telangana. Similar studies 

done across the world demonstrate an improvement in 

crop yields and an increase in the resilience of farms from 

rapid climate change.  

 

Keywords: Data Science, Climate Change, Agriculture, 

Data Powered Positive Deviance, Geospatial science 

 

I. INTRODUCTION: 

Rising temperatures, changing precipitation patterns, and 

increased frequency of extreme weather events have a 

significant impact on agriculture and food production. This 

requires need for introduction of innovative solutions that can 

help farmers adapt to these changing conditions and improve 

the resilience of their crops to climate change. 

One promising approach to addressing this challenge is the use 

of data science and machine learning techniques to better 

understand the complex relationships between weather 

patterns, soil moisture, and crop growth. By analyzing copious 

amounts of data on these factors, it is possible to find patterns 

and trends that can be used to inform agricultural practices and 

policies. Our work uses data science to help farmers adopt 

climate-resilient practices. The project contributed datasets 

and trend analysis using data-powered positive deviance 

(DPPD). 

It is based on an approach called DPPD, which uses data 

science to find positive deviance in agricultural practices. 

Positive deviances are farmers who are achieving better crop 

yields than their peers, despite similar weather conditions and 

soil moisture levels. By identifying these positive deviants and 

studying their practices, it is possible to identify strategies and 

techniques that can be used to improve crop resilience to 

climate change. (Albanna et. al, 2018, Dreisen et. al. 2021) 

Datasets of several factors affecting agricultural outputs that 

are also affected by climate change were created and then used 

to calculate DPPD products and do an STL analysis, which 

was used to identify positive deviances in agricultural 

practices. The research also implemented trend analysis to 

understand the long-term changes in weather patterns and their 

impact on crop growth. Once the positive deviances were 

identified, the work was used by the governments of the 

Indian states to develop policies and programs that could be 

implemented to help other farmers adopt similar practices. 

These policies included training programs for farmers, 

subsidies for certain types of equipment, and financial 

incentives for farmers who adopt climate-resilient practices. 

(Adelhart et. al, 2020)  

The results of the project were highly encouraging. By using 

data science to identify positive deviances and implement 

policies and programs to promote climate-resilient practices, it 

was possible to significantly improve crop yields and increase 

the resilience of farms to changing weather conditions. 

Furthermore, the approach used has the potential to be scaled 

up and applied in other regions and countries, making it a 

powerful tool in the fight against climate change.  
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II. DATA AND METHODS 

a. Soil Moisture 

Soil is an essential factor in crop growth and production, as it 

affects the availability of water for plant growth and can also 

impact the susceptibility of crops to pests and diseases. In 

agriculture, monitoring soil moisture levels is important for 

determining when and how much to water crops, as well as 

identifying areas that may be at risk of drought or 

waterlogging. It is often considered a direct way of 

quantifying agricultural drought. In the past, measurements of 

soil moisture at regional scales have been sparse, but recent 

advancements in land surface modeling and the development 

of satellite technology to indirectly measure surface soil 

moisture have led to the emergence of several national and 

global soil moisture data sets that provide insight into the 

dynamics of agricultural drought.  

As droughts are often defined by normal conditions for a 

given time and place, data sets used to quantify drought 

require a representative baseline of conditions to accurately 

establish a normal. This presents a challenge when working 

with earth observation data sets which often have very short 

baselines for a single instrument. In a study by (Champagne et 

al., 2019) three soil moisture data sets were assessed: a surface 

satellite soil moisture data set from the Soil Moisture and 

Ocean Salinity (SMOS) mission operating since 2010; a 

blended surface satellite soil moisture data set from the 

European Space Agency Climate Change Initiative (ESA-

CCI) that has a long history and a surface and root zone soil 

moisture data set from the Canadian Meteorology Centre 

(CMC)’s Regional Deterministic Prediction System (RDPS). 

The results showed that using short baseline soil moisture data 

sets can produce consistent results compared to using a longer 

data set, but the characteristics of the years used for the 

baseline are important. Soil moisture baselines of 18–20 years 

or more are needed to reliably estimate the relationship 

between high soil moisture and high-yielding years. The study 

highlights the importance of soil moisture in agricultural 

drought, and the need for reliable data sets to understand its 

dynamics. (Rossato et al.,2019, Saha et al.,2020). Established 

the significance of temperature anomalies on agriculture, a 

dataset was selected from the set of available datasets 

mentioned in table 1 below. 

 

Table 1: Gridded Soil Moisture datasets available in public 

domain 

Name of 

dataset 

Spatial 

Resolution 

Tempor

al 

Resoluti

on 

Frequenc

y 

Copernicus 

Climate 

Change 

Service Soil 

moisture 

(Copernicus) 

0.25°x0.25° 

 

1978 to 

present 

10 days 

NASA - 

USDA 

Global 

Surface soil 

moisture 

(Bolten et. 

al, 2010) 

0.25°x0.25° 2015-

2020 

3 days 

NASA - 

USDA 

Enhanced 

Surface soil 

moisture 

(Bolten et. 

al, 2010) 

10-km 2015-

2020 

3 days 

 

To gain a comprehensive understanding of soil moisture levels 

at a local scale, the NASA-USDA Enhanced Surface soil 

moisture dataset with a 10km spatial resolution was selected 

for the use. This dataset supplies high-resolution data that is 

essential for understanding the impact of soil moisture on 

agricultural outputs in small regions. 

 

Temperature Anomalies 

Temperature anomalies refer to the deviation of temperature 

from a long-term average temperature. In agriculture, 

temperature plays a crucial role in crop growth and 

development. Elevated temperatures can lead to stress in 

plants and reduce crop yields. Therefore, understanding and 

monitoring temperature anomalies are important for farmers to 

protect their crops from heat stress and to improve crop yields. 

Research on the impact of temperature anomalies on 

agricultural practices and yields has been done by several 

institutions. Some findings include the degree of yield 

decrease observed in the primary four staple crops namely 

wheat, rice, maize, and soybean are severely affected by 

changes in temperatures. An increase in global temperatures 

by 1 degree can affect crop production drastically - approx. A 

6% yield decrease was seen in wheat, 3.2% in rice and 7.4% in 

maize, and 3.1% in soybean in areas where temperatures favor 

the growth of these crops. Increasing temperature anomalies 

have caused farmers to respond with various on-farm and off-

the-farm techniques to ensure the sustenance of their 

livelihood. (Vogel et al., 2019). On-farm strategies such as 

increasing the area of the land under farming or using a 

staggered farming approach to timing the sowing time, where 

farmers leave some seeds to be snowed afterward to mitigate 

any calamity or anomaly that might cause the failure of crops. 

Off-farm practices such as expansion and diversification of 

businesses such as farming livestock or setting up businesses 

in other industries have been adopted by farmers to manage 

the risks arising from climate change. Calamities like drought 

might decrease the possibilities further, decreasing 

opportunities for diversification. Such situations might lead 

farmers to look for better opportunities elsewhere. (Vogel et. 

al, 2019). 
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Agricultural production is vulnerable to climate change with 

temperature abnormalities being the most detrimental factor 

affecting crop growth. Given the crucial effect of temperature 

on the crop yields and agricultural practices, and so the 

livelihood of an area. It becomes crucial to measure 

temperature anomalies to understand the patterns and devise 

strategies accordingly. (Zhao et. al, 2017) 

There are multiple updated and peer-reviewed surface 

temperature anomaly products available, notably produced by 

NASA/GISS (GISTEMP), National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental 

Information (NCEI) with the Merged Land-Ocean Surface 

Temperature Analysis, the HadCRUT, Japanese 

Meteorological Agency (JMA) and Berkeley Earth.  

These analyses use considerably different methods for the 

calculation of historical global and regional mean time series 

but broadly agree on the trends and interannual variations in 

the global annual mean time series, though they differ at more 

regional scales as a function of data coverage and interpolation 

method. All of the most commonly cited surface temperature 

analyses split up the calculation of global anomaly fields into 

separate LSAT and SST anomaly analyses. These independent 

LSAT and SST analyses are combined into a total (LSAT and 

SST) global surface temperature index from which spatially 

averaged global and regional time series can be computed 

(note this is not strictly equal to the true surface air 

temperature anomaly; Cowtan et al., 2015). Likewise, the 

uncertainty analyses for the LSAT and SST are performed 

separately, then combined into total global uncertainty. A 

graph of several of the datasets discussed above is displayed in 

Figure 1. This research considered several other datasets 

factoring in important metrics such as the spatial and temporal 

resolution of the temperature datasets. Table 2 denotes the 

specifications of the datasets considered for our research. 

(Lenssen et al., 2019) 

 

 
Fig 1. Temperature anomalies (NASA, NOAA, Hadley, 

JMA, Berkeley Earth, Cowtan) 

 

 

Calculation of Temperature anomalies 

Table 2: Gridded Temperature anomaly datasets available 

in the public domain 

Name of 

dataset 

Spatial 

Resolution 

Temporal 

Resolution 

Frequency 

CPC 

(CPC) 

0.5°x0.5° 1979-

present 

daily 

WorldClim 

2.1 (Fick 

et. al, 

2017) 

2.5 arc 

minute 

1970–2018 monthly 

CRU TS 

v4.06 

(Harris 

et.al.,2022) 

0.5°x0.5° 1901–2021 monthly 

CHELSA 

v2.1 

(Karger 

et.al, 2017) 

30 arc 

second 

1980–2019 monthly 

HADEx3 

(Dunn 

et.al, 2020) 

1.25° x 

1.875° 

1901-2018 daily 

Berkeley 

Earth 

(Rohde et. 

al, 2021) 

1°x1° 1833- 

Present 

monthly 

 

It was decided to use Copernicus ERA5-Land monthly 

averaged data from 1950 to present to create our own datasets 

for temperature anomalies because of limited availability of 

long-term data with good enough resolution. These limitations 

led to the creation of in-situ temperature anomaly datasets 

using the Copernicus dataset.  

 

Methodologies for calculating Temperature anomalies. 

The method employed in this study involves the calculation of 

temperature anomalies to better understand and analyze 

temporal variations in temperature. Temperature anomalies are 

determined by subtracting a long-term mean temperature from 

the available temperature data for a given period, thereby 

isolating and identifying deviations from the mean 

temperature. This enables the identification of trends, patterns, 

and changes in temperature, supplying valuable insights into 

the characteristics and behavior of temperature. 

 

NASA Climate uses a 30-year reference period (1951-1980) to 

calculate the deviation of a measured temperature at a given 

weather station compared to an average value for that location 

and time, which is referred to as a temperature anomaly. 

While the Japan Meteorological Association uses a similar 

method for estimating global mean temperature anomalies. 

Their procedure involves obtaining an average for monthly-

mean temperature anomalies against a 1991-2020 baseline 
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over land and sea surface in each 5° x 5° grid box worldwide. 

They then average these values according to the land-to-ocean 

ratio for each grid box and use this to calculate the monthly, 

annual, and seasonal mean global temperature anomalies by 

averaging the anomalies of all the grid boxes weighted with 

the area of the grid box. 

 

Workflow of Methodology to calculate temperature 

anomalies 

The method used to calculate temperature anomalies can be 

shown through the following steps: 

1. Obtain global temperature data and calculate the 

climatological averages over a 30–50-year period using 

statistical methods such as the arithmetic mean or the 

more robust method of the climatological mean. It is 

important to note that the choice of the period of record is 

important as it can influence the results and the 

significance of the temperature anomalies. Once the 

climatological averages are calculated, it is important to 

distinguish between the monthly and annual averages as 

they provide different information about the temperature 

variability. 

2. Determine the deviation of specific months or years from 

the average temperature values calculated in step 1. This 

step involves calculating the temperature anomaly, which 

is defined as the difference between the observed 

temperature and the climatological average for that 

specific month or year. This can be calculated using a 

mathematical formula, for example, (Observed 

temperature - Climatological average) / Climatological 

average. 

3. Use the calculated temperature anomalies to create maps, 

which display variations in temperature at different 

geographical levels.  

  

 
Fig 2. Workflow of methodology to calculate temperature 

anomalies. 

 

b. Precipitation Anomalies 

Rainfall anomalies, defined as deviations of annual rainfall 

from long-run averages, are a recurring challenge that 

threatens agricultural systems and disproportionately affects 

the developing world. Many of the world's poorest countries, 

which have a high dependence on agricultural employment, 

rapidly expanding populations, and elevated levels of water 

stress, also endure strong variability of rainfall (Zaveri et al., 

2018; Palagi et al., 2020; Felton et al., 2019). Since the middle 

of the 20th century, anthropogenic climate forcing has doubled 

the joint probability of years that are both warm and dry in the 

same location, with tropics and subtropics facing more record-

breaking dry events (Zaveri et al., 2018). 

While the effects of rainfall variability on crop yields and 

productivity have been widely studied, the consequences of 

changes in cropland area, and by extension deforestation, are 

less well understood and are yet to be quantified at a global, 

disaggregated scale. Rainfall anomalies are known to have 

deleterious impacts on agricultural yields, but the resulting 

consequences on cropland expansion remain uncertain. A 

study of the differential scale of these impacts around the 

world was done. 

It was found that repeated dry anomalies increase cropland 

expansion specifically in developing countries, which are 

characteristically dominated by small-holder farming, 

implying that cropland is expanded to compensate for lower 

yields. Two tests corroborate the results. First, comparable 

reductions in forest cover due to repeated dry anomalies are 

found in the same regions where cropland expands. Second, in 

places where infrastructure buffers yield from rainfall 

anomalies, cropland expansion halts (Zaveri et al., 2018). 

While evidence indicates that climate change is likely to 

increase income inequality between countries, its impacts 

across different income classes are less understood. Using 

global data on inequality indicators, it is shown that rainfall 

anomalies increase income inequality in economies that are 

heavily dependent on agriculture. Climate projections show 

that existing disparities are likely to worsen over time. Our 

findings underline the urgent need for inclusive and 

sustainable development policies, especially in highly exposed 

countries (Palagi et al., 2020). Research has continuously 

shown that rainfall anomalies exacerbate income inequality 

and cropland expansion in developing countries heavily 

dependent on agriculture. The results highlight the urgent need 

for inclusive and sustainable development policies to address 

the negative impacts of climate change on the bottom of the 

income distribution and on the environment.  
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Calculation of Precipitation anomalies 

Table 2: Gridded precipitation anomaly datasets available 

in the public domain 

 

Dataset Spatial 

Resolution 

Temporal 

resolution 

Frequency 

NOAA 

NCEP CPC 

CAMS_OPI 

v0208 

2.5°x2.5° 1979-

Present 

Monthly 

Climate 

Hazards 

Group 

InfraRed 

Precipitation 

with Station 

data 

0.05°x0.05° 1981-2022 Daily, 

monthly 

 

More datasets available at: 

https://psl.noaa.gov/data/gridded/tables/precipitation.html 

 

The work decided to create in-situ datasets for Precipitation 

anomalies because of the limitations in the data such as lack of 

spatial accuracy and temporal unavailability. Again, 

Copernicus ERA5 data was preferred for the purpose because 

of the familiarity and easy availability of the dataset. The 

methodology used for the calculation of precipitation 

anomalies was in every way the same as that for the 

calculation of temperature anomalies.  

 

III. METHODOLOGIES FOR CALCULATING DPPD: 

The methodology proposed in this research paper aims to 

analyze the temporal trends of a given variable across a 

specific region. To accomplish this task, the seasonal-trend 

decomposition using the loess (STL) method is applied to the 

time series data of the factor in consideration. The STL 

method decomposes the original time series into three 

components: trend, seasonal, and residual. The trend 

component is then used to perform linear regression and 

obtain the slope, which serves as an indicator of the temporal 

trend of the variable. 

The input data for the analysis is a data frame containing the 

time series data of the values recorded, with the date as the 

index. The first step is to convert this data frame into a Pandas 

series, with the values recorded as the values and the dates as 

the index. The STL method is then applied to this series to 

decompose it into its trend component. Next, the linear 

regression is applied to the trend component using the date as 

the independent variable, and the slope of the regression line is 

obtained as the indicator of the temporal trend. 

To obtain the trend score of the variable for each location, the 

above steps are repeated for each location by iterating over the 

columns in the data frame which represents the coordinate of 

the geography, and the resulting slopes are stored in an array. 

The final output is an array of trend scores, one for each 

location, which can be further analyzed to study the temporal 

trends of the variable across the region. 

 

IV. RESULTS & DISCUSSION 

In this study a dataset of soil moisture, temperature anomalies, 

and precipitation anomalies for the states of Telangana was 

created. The data was collected from various sources, 

including satellite imagery and weather station readings. The 

research used trend analysis to identify positive deviances in 

soil moisture, temperature anomalies, and precipitation 

anomalies. Positive deviances were defined as instances where 

farmers were achieving better crop yields or using less water 

despite facing similar environmental conditions as their peers. 

 

 
Fig 3. Telangana Mandal deviances in soil moisture, positive 

values are highlighted in green and the ones with the least 

positive/ negative deviances were highlighted in red. 

 

https://psl.noaa.gov/data/gridded/tables/precipitation.html
https://psl.noaa.gov/data/gridded/tables/precipitation.html
https://psl.noaa.gov/data/gridded/tables/precipitation.html
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Fig 4. Telangana Mandal deviances in Temperature anomalies, 

positive values are highlighted in green and the ones with the 

least positive/ negative deviances were highlighted in red. 

 

 
Fig 5. Telangana Mandal deviances in precipitation anomalies, 

positive values are highlighted in green and the ones with the 

least positive/ negative deviances were highlighted in red. 

 

Observed values of Soil moisture, Temperature anomalies, 

and Precipitation anomalies are represented in the tables 

below: 

Table 3: Region with positive soil moisture deviance (Top 

5): 

 

Mandal Name Normalized 

deviance value 

Chinnambavi 1 

Pentlavelli 0.968607 

Kuravi 0.552656 

Adavidevulapally 0.533208 

Dornakal 0.529491 

 

Table 4: Region with negative/low soil moisture deviance 

(Bottom 5): 

Mandal 

Name 

Normalized 

deviance value 

Balapur -1 

Shamshabad -0.96492 

Rajendranagar -0.92257 

Hayathnagar -0.88956 

Bandlaguda -0.88618 

 

Table 5: Region with positive temperature anomalies 

deviance (Top 5): 

Mandal Name Normalized 

deviance value 

Aswaraopeta -1 

Dammapeta -0.97605 

Sathupally -0.95808 

Mulakalapally -0.88323 

Annapureddipalle -0.87725 

 

Table 6: Region with negative/low temperature anomalies 

deviance (Bottom 5): 

Mandal 

Name 

Normalized 

deviance value 

Naspur 0.997006 

Bheemaram 1 

Mandamarri 1 

 

Table 7: Region with positive precipitation anomalies 

deviance (Top 5): 

Mandal 

Name 

Normalized deviance 

value 

Dhoolumitta -1 

Masaipet -0.99657 

Chowtakur -0.99313 

Chandur -0.9897 

Mosra -0.98626 
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Table 8: Region with negative/low precipitation anomalies 

deviance (Bottom 5): 

Mandal Name Normalized 

deviance value 

Abdullapurmet 1 

Achampet 0.996643 

Adavidevulapally 0.993208 

Addagudur 0.989825 

Addakal 0.986468 

 

The regions with the highest and lowest deviances in soil 

moisture were Chinnambavi and Balapur, respectively. The 

regions with the highest deviances in temperature anomalies 

were Naspur, Bheemaram, and Mandamarri, while the regions 

with the lowest deviances in temperature anomalies were 

Aswaraopeta, Dammapeta, and Sathupally. The regions with 

the highest deviances in precipitation anomalies were 

Abdullapurmet, Achampet, Adavidevulapally, Addagudur, 

and Addakal, while the regions with the lowest deviances in 

precipitation anomalies were Dhoolumitta, Masaipet, 

Chowtakur, Chandur, and Mosra. 

The results of this analysis are available on the DiCRA 

platform, which can be accessed at 

https://github.com/undpindia/dicra and 

https://dicra.undp.org.in/. The platform allows users to explore 

the data and identify positive deviances in their own regions. 

We also collaborated with government officials to provide 

training and support to farmers so that they could implement 

these practices on their own farms. Our work provides 

valuable information for helping farmers adapt to a changing 

climate. The data and platform are also freely accessible to 

policymakers, researchers, and other stakeholders. The data 

and platform can also be used to understand the overall 

patterns of soil moisture and precipitation in the region and 

identify the regions that are more susceptible to drought. 

 

V. CONCLUSION 

Analysing the changing weather patterns, particularly 

temperature anomalies, soil moisture, and precipitation 

anomalies, is crucial in understanding the effects of climate 

change on agriculture and food production. This research has 

shown that by using data science and machine learning 

techniques to identify positive deviances in these factors, it is 

possible to identify and implement strategies that can improve 

crop resilience to climate change. The results were promising, 

showing an improvement in crop yields and an increase in the 

resilience of farms to changing weather conditions. This 

approach can be applied in other regions and countries as well. 

However, there are limitations to the methodology used in this 

research. The analysis assumes that all data available is 

accurate and complete, and there are limitations in terms of 

spatial and temporal resolution. Additionally, computing 

power may have affected the results. 

Future work includes investigating the relationship between 

these variables and how they impact crop yields and 

agriculture on a ground level. The data and platform can also 

be used to identify regions that are more susceptible to 

drought. The data and platform are freely accessible to 

policymakers, researchers, and other stakeholders, and can be 

used to make informed decisions. Another area of future 

research could be to investigate the impact of these anomalies 

on crop yields and production. Long-term data on crop yields 

in Telangana is not currently publicly available, but if it were, 

it would allow for a more comprehensive analysis of the 

relationship between these anomalies and crop yields. 

Furthermore, analyzing the relationship between temperature 

anomalies, soil moisture, and precipitation anomalies, on crop 

yields and agriculture at the ground level can be helpful to 

understand the impact of these factors on crop production and 

farmers' livelihoods. 

Further works could also try to improve the spatial and 

temporal resolution of the analysis. This could involve using 

more advanced data interpolation techniques or incorporating 

data from more sources to increase the accuracy of the 

analysis. Additionally, exploring the impact of temperature 

anomalies on different crops and different regions can be 

helpful to understand the variability of these factors on 

different crops and regions. 
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